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The present investigation is concerned with the flexural and transversal wave motion in

an infinite, transversely isotropic, thermoelastic plate by asymptotic method. The

governing equations for the flexural and transversal motions have been derived from

the system of three-dimensional dynamical equations of linear theory of coupled

and transversal, in a homogenous thermoelastic plate leads to fifth degree and cubic

polynomial secular equations, respectively, that governs frequency and phase velocity of

various possible modes of wave propagation at all wavelengths. All the coefficients of

differential operator have been expressed as explicit functions of the material

parameters. The velocity dispersion equations for the flexural and transversal wave

motion have been deduced from the three-dimensional analog of Rayleigh–Lamb

frequency equation for thermoelastic plate waves. The approximations for long and

short waves and expression for group velocity have also been derived. The thermoelastic

Rayleigh–Lamb frequency equations for the considered plate are expanded in power

series in order to obtain polynomial frequency and velocity dispersion relations whose

equivalence is established with that of asymptotic method. The dispersion curves for

phase velocity, group velocity and attenuation coefficient of various flexural and

transversal wave modes are shown graphically for aluminum-epoxy material elastic and

thermoelastic plates.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The wave propagation in elastic and thermoelastic plate structures has received much attention [1–5] during the recent
years because of its engineering applications. Losin [6,7] studied the asymptotics of flexural and extensional waves in
homogeneous isotropic elastic plates. Losin [8] tried to establish the equivalence of dispersion relations obtained from
operator plate model and Rayleigh–Lamb frequency equation. He established that terms up to eighth power of nh lead to
equivalence in dispersion relations obtained from two methods. The work of Losin [6,7] was further extended to
transversely isotropic elastic plate by Sharma and Kumar [9,10]. Zelentsov [11] proposed an asymptotic method for solving
transient elastic problem of thin strips by employing combination of Laplace and Fourier transform and obtained
asymptotic solutions for large values of Laplace transform parameter. Kirova et al. [12] have studied the asymptotic
behavior for linear and nonlinear waves in viscoelastic materials. Ryabenkov and Faizullina [13] proved that asymptotic
method is identical with the method of hypothesis and successive approximations for slabs and plates. Agalovyan and
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Gevorkyan [14] solved first boundary-value problem for forced vibrations of an isotropic strip by an asymptotic method.
Gales [15] studied asymptotic spatial behavior of solutions in a mixture consisting of two thermoelastic solids.

The coupling between the strain and temperature fields was first studied by Duhamel [16] who derived equations for
the distribution of strains in an elastic medium subjected to temperature gradients. Biot [17] gave a satisfactory derivation
of the equation of thermal conductivity which included the dilation term based on thermodynamics of irreversible
processes. Sharma et al. [18,19] investigated the propagation of thermoelastic waves in homogeneous isotropic plate
subjected to stress free/ rigid fixed and thermally insulated/ isothermal conditions in the conventional coupled and
generalized theories of thermoelasticity. Sharma and Singh [20] studied the propagation of circularly crested thermoelastic
waves in a homogeneous isotropic cylindrical plate subjected to stress free and isothermal conditions. Sharma and Pathania
[21] studied the propagation of waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with
layers of inviscid liquid or half-space of inviscid liquid on both sides. Gevorgyan [22] investigated the thermoelastic wave
propagation in a transversely isotropic heat conducting as well as non-heat conducting elastic materials. The asymptotic
expansion of the frequency equation for wave motion in a thermoelastic plate generated by the Rayleigh–Lamb equation
does not give an adequate approximation. Senthil and Batra [23] investigated three-dimensional thermomechanical
deformations of a simply supported functionally graded rectangular plate. Altukhov [24] obtained the homogenous
thermal solutions due to a temperature field for three-dimensional thermoelastic problem for isotropic plates.

Moreover, it is pertinent to mention here that the dispersion relations reported in the works of Losin [6,7] were of sixth
degree polynomial equations in frequency/phase velocity instead of tenth degree as reported in [9,10]. However, the
corresponding equivalence relations obtained by Losin [8] in case of symmetric (extensional) and skew symmetric
(flexural) motions of elastic plate are also tenth degree polynomial equations in phase velocity (see terms under the braces
of Eqs. (7) and (14) in [8]). Equivalence of these relations has been established by considering terms upto eighth power of
Z ¼ nh. The present work is an attempt to find a frequency and velocity dispersion relation from three-dimensional analog
of the thermoelastic Rayleigh–Lamb frequency equation that would be sufficient to govern the flexural, and transversal and
wave motions. The asymptotic method applied by Protsenko [25] for thin n-shelled elastic structures and by the authors
[6,7,9] in case of elastic plates is employed in this investigation. The dispersion relation obtained here is also tenth degree
polynomial in frequency/phase velocity which is in agreement with [9] and its equivalence relation also agrees with
Eq. (14) of Losin [8] in non-dimensional form.
2. Formulation of the problem

We consider free wave motion in a homogenous isotropic coupled thermoelastic plate of thickness 2h initially at
uniform temperature T0 in the undisturbed state. The origin of Cartesian coordinate system oxyz is taken at any point o in
the middle plane of the plate and z-axis is pointed along the thickness of the plate. We assume that the plate is infinite in x

and y directions which thus occupies the region

O ¼ f�1ox; yo1;�hrzrhg

In the region O, the corresponding basic governing equations of linear thermoelasticity in the absence of body forces and
heat sources, are given by
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where b ¼ ð3lþ 2mÞat , at is coefficient of linear thermal expansion; l, m are Lamé parameters; T ¼ Tðx; y; z; tÞ is
temperature change; u, v and w are displacement components; K is thermal conductivity; r is mass density and ce is the
specific heat at constant strain.

The surfaces of plate are assumed to be stress free and thermally insulated. Thus the boundary conditions on the
surfaces z ¼7h of the plate to be satisfied are

sxz ¼ m qu

qz
þ
qw

qx

� �
¼ 0
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syz ¼ m qv

qz
þ
qw
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We define the quantities

ðx0; y0; z0Þ ¼
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(6)

where o� is characteristics frequency, e is thermoelastic-coupling constant, c1 and c2 are the velocities of longitudinal and
transverse waves, respectively.

Upon introducing quantities (6) in governing Eqs. (1)–(4) and boundary conditions (5), we obtain (on suppressing
dashes for convenience)
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sxz ¼ d2 qu

qz
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qw

qx
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¼ 0

syz ¼ d2 qv
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qw
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3. Solution of the problem

We assume harmonic wave solution of the form

ðu; T;v;wÞðx; y; z; tÞ ¼ ~uðzÞexpf�ið~r � ~n �otÞg (12)

where ~uðzÞ ¼ ðUðzÞ;yðzÞ;VðzÞ;WðzÞÞ is amplitude vector, o ¼ ~oðnÞ is the circular frequency depending on the wavenumber
~n ¼ ðn1;n2Þ and ~r ¼ ðx; yÞ.

On applying solution (12) to governing Eqs. (7)–(11) and observing that the coefficient of operator D2 ð¼ d2=dz2Þ is a
non-singular matrix of order four, the resulting system of equations can be written in matrix form as

ðD2 � Q1D� R1Þ~uðzÞ ¼ 0in the domain O (13)

scðz;nÞ ¼ ðD� S1Þ~uðzÞ ¼ ~0on z ¼7h (14)
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where

Q1 ¼ in
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n1ð1� d2
Þ �io�1c n2ð1� d2
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� 1Þ 0
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2Þ � c2

2
666664

3
777775;

S1 ¼ in

0 0 0 n1

0 0 0 0

0 0 0 n2

ð1� 2d2
Þn1 �io�1c ð1� 2d2

Þn2 0

2
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scðz;nÞ ¼ ½d
�2sxz T;z d�2syz szz�

t is modified stress vector.

Here n1 ¼ n1=n, n2 ¼ n2=n, n ¼ j~nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2

q
, ~n ¼ nn̂, n̂ ¼ ðn1;n2Þ, Dm~uðzÞ ¼ dm~uðzÞ=dzm, ~cð~nÞ ¼ ~oðnÞ=n is the phase

velocity, cðnÞ ¼ j~cð~nÞj is the phase speed of a traveling wave and n̂ is the unit direction vector.
If we consider the waves propagating along x-axis, so that ðn1;n2Þ ¼ ð1;0Þ, then from Eqs. (13) and (14), we obtain

ðD2 � QD� RÞ~uðzÞ ¼ 0in the domain O

scðz;nÞ ¼ ðD� SÞ~uðzÞ ¼ ~0on z ¼7h

where
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2
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3
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4. Boundary value problem and its solution

Assuming that scðz;nÞ has a finite asymptotic expansion of the form

scðz;nÞ ¼
XN

m¼0

sðmÞc ðzÞe
m
T þ oðem

T Þ; z ¼
z

h
; eT ¼ nh

and approximating it by the partial sum of Taylor series expansions in z ð�hozohÞ, about z ¼ 0, we obtain

scðzÞ ¼
XN

m¼0

sðmÞc ð0Þ
zm

m!
þ oðzNÞ (17)

where scðzÞ ¼ ðD� SÞ~uðzÞ, sðmÞc ¼ dmsc=dzm and the second argument is omitted for convenience.
In case the surfaces z ¼7h of the plate are subjected to stress free and thermally insulated/boundary conditions, one

can write

scðhÞ7scð�hÞ ¼ 0 (18)
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Using the asymptotic expansion (17) for scðzÞ in Eq. (18), one arrives at the following asymptotic boundary value problem

D2~uðzÞ ¼ ðQDþ RÞ~uðzÞ in the domain O (19)

ðu
, ð1Þ

ð0Þ � SðnÞ~uð0ÞÞ þ
h2

2
ðu
, ð3Þ

ð0Þ � SðnÞ~u
ð2Þ
ð0ÞÞ þ

h4

24
þ ðu

, ð5Þ

ð0Þ � SðnÞ~u
ð4Þ
ð0ÞÞ � 0 (20)

ðu
, ð2Þ

ð0Þ � SðnÞ~u
ð1Þ
ð0ÞÞ þ

h2

6
ðu
, ð4Þ

ð0Þ � SðnÞ~u
ð3Þ
ð0ÞÞ þ

h4

24
þ ðu

, ð6Þ

ð0Þ � SðnÞ~u
ð5Þ
ð0ÞÞ � 0 (21)

where uðmÞ ¼ dmu=dzm.
Eqs. (20) and (21) are valid at the thermally insulated and stress free surfaces of the plate.
The successive differentiation of Eq. (19) four times with the help of Eqs. (20) and (21) leads to

I þ
h2n2

2
Aþ

h4n4

24
B

� �
~u
ð1Þ
ð0Þ � n S�

h2n2

2
C �
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24
N

� �
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h2n2

6
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h4n4

120
H

� �
~uð0Þ ¼ 0

,

(23)

where

A ¼ Rþ ðQ � SÞQ ;B ¼ Gþ EQ ;C ¼ ðQ � SÞR

E ¼ C þ AQ ; F ¼ BQ þ N;G ¼ AR;H ¼ BR;N ¼ ER

It is noticed that the matrices A and B have block diagonal structures given by

A ¼

a11 a12 0 0

a21 a22 0 0

0 0 a33 0

0 0 0 a44

2
66664

3
77775 ¼ ðaijÞ4�4;B ¼

b11 b12 0 0

b21 b22 0 0

0 0 b33 0

0 0 0 b44

2
66664

3
77775 ¼ ðbijÞ4�4

where a11 ¼ 1þ 2g� v2
s , a12 ¼ �2io�1dvs, a21 ¼ d3evs, a22 ¼ 1þ xv2

s , a33 ¼ 1� v2
s , a44 ¼ d2

ð2� v2
s Þ � 1,

b11 ¼ 1þ 4g� a1v2
s þ v4

s , b12 ¼ �4io�1dvs � a2v3
s , b21 ¼ a3vs � a4v3

s , b22 ¼ 1þ a5v2
s � a6v4

s , b33 ¼ ð1� v2
s Þ

2,

b44 ¼ �ð4gþ 3Þ � a7v2
s þ a8v4

s , g ¼ 1� d2, x ¼ io�1d2
ð1� eÞ, x0 ¼ io�1d2e; vs ¼ c=d, a1 ¼ 2½2ð1þ x0Þ � d2

ðd2
þ x0Þ�,

a2 ¼ 2io�1d2
ðx� d2

Þ, a3 ¼ 2edð1þ 2gÞ, a4 ¼ de½2ð1� xÞ � d2
ðd2
� xÞ�, a5 ¼ 2ðx� x0Þ, a6 ¼ x2

� d2x0, a7 ¼ 4d2
� 7,

a8 ¼ 2ð�gþ a9Þ, a9 ¼ d2
ðx0 þ d2

Þ.

The coefficient of ~u
ð1Þ

in Eq. (22) being a non-singular square matrix of order four and therefore one can obtain the
resolving operator from Eqs. (22) and (23) as

Pu
,

ð0Þ ¼ P0 þ P2
h2n2

6
þ P4

h4n4

120

� �
~uð0Þ ¼ ~0 (24)

where

P0 ¼ Rþ ðQ � SÞM�1S

P2 ¼ Gþ EM�1S� 3ðQ � SÞM�1C

P4 ¼ H þ FM�1S� 10EM�1C � 5ðQ � SÞM�1N

Here the matrix M ¼ ðmijÞ4�4; mij ¼ dij þ ðh
2n2=2Þaij þ ðh

4n4=24Þbij; i; j ¼ 1;2;3,4 and M�1 is its inverse. The matrix of the
operator P has in general a block diagonal structure of the form

P ¼ diagðPL; PS1
; PS2
Þ~u ¼ 0 (25)

and thus we have

PL

U

y

� �
¼ 0; PS1

½V � ¼ 0; PS2
½W� ¼ 0

where PL ¼ ðpijÞ2�2, PS1
¼ ðp33Þ1�1 and PS2

¼ ðp44Þ1�1, respectively, govern the extensional, transversal and flexural in plane
motion of the plate.

Eq. (25) has a non-trivial solution if and only if

jPj � det PL � det PS1
� det PS2

¼ 0 (26)
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This leads to the secular equations

p11p22 � p12p21 ¼ 0; p33 ¼ 0; p44 ¼ 0 (27)

Eq. (26) is the three-dimensional analog of the Rayleigh–Lamb frequency for a thermoelastic plate. The first, second and
third equations in system (27) are the corresponding frequency equations for extensional, transversal and flexural waves
motion, respectively. We study only transversal and flexural wave motion one by one in the following sections.

5. Transversal motion of a plate

The second equation in the system of Eqs. (27) governs the transversal vibration, since the operator PS1
¼ p33 affects the

displacement v only. According to structure (24) of the operator P, the second equation of (27) has the form

v6
s � 3þ

20

n2h2

� �
v4

s þ 3þ
40

n2h2
þ

120

n4h4

� �
v2

s � 1þ
20

n2h2
þ

120

n4h4

� �
¼ 0 (28)

Eq. (28) leads to values of phase velocity as

c ¼7d; 7d 1þ
2ð57i

ffiffiffi
5
p
Þ

n2h2

 !1=2

(29)

The substitution vs ¼ os=n transforms the velocity Eq. (28) into the frequency equation which is obtained as

o6
s � 3n2 þ

20

h2

� �
o4

s þ 3n4 þ
40n2

h2
þ

120

h4

� �
o2

s � 3n6 þ
20n4

h2
þ

120n2

h4

� �
¼ 0 (30)

where os ¼ osðnÞ.
Differentiating Eq. (30) with respect to n, the expression for group velocity cgðnÞ ¼ doðnÞ=dn of the transversal motion is

cg ¼ 1=vs ¼ n=os in terms of phase velocity vs and frequency os, respectively, by using the relation vs(n)=os(n)/n. Eq. (30) is
the dispersion equation for the transversal motion of a plate in terms of frequency os ¼ o=d. Clearly the wave motion
under consideration is dispersive in character and attenuating in space in case of complex phase velocity in addition to its
dependence on parameters nh and d.

The substitution �n2-r
2, �in1-q=qx, �in2-q=qy, io-q=qt, in Eq. (30) and consequent rearrangements of the terms

lead to the following asymptotic differential equation:

120
q2

qt2
�r2

 !
þ 20h2 q4

qt4
� 2r2 q2

qt2
þr4

 !
þ h4 q6

qt6
� 3r2 q4

qt4
þ 3r4 q2

qt2
� 3r6

 !( )
V ¼ 0 (31)

Eq. (31) governs the transversal motion of the plate.

5.1. Long and short wavelength waves

The limiting forms of secular Eq. (28) in case of long wave length ðnh-0Þ and short wave length ðnh-1Þ

approximations are, respectively, obtained as

o2
s o4

s �
20

h2
o2

s þ
120

h4

� �
¼ 0

ðv2
s � 1Þ3 ¼ 0 (32)

where vs ¼ os=n and os ¼ o=d. The first equation of Eqs. (32) provides us one trivial roots ðos ¼ 0Þ and corresponding
phase velocity vs ¼ 1. Moreover the group velocity is same as phase velocity and hence the waves are dispersion less in
character. The biquadratic under the braces provides us a pair of complex conjugate roots and the corresponding modes of
wave propagation are dissipative with time and travels with phase velocity given by vs ¼ ReðosÞ=n and dissipative constant
Ds ¼ ImðosÞ. The second equation of (32) leads to root vs ¼ 1 of multiplicity three and the corresponding wave modes are
non-dissipative.

6. Flexural motion of a plate

The third equation of system (27) governs the flexural vibrations; because the operator PS2
¼ p44 affects the

displacement component w only. According to the structure (24) of the operator P, the third equation in the system
of Eqs. (27) has the form

f0v10
s þ g1v8

s þ g3v6
s þ g6v4

s þ g9v2
s þ g12 ¼ 0 (33)

where g1 ¼ f1 þ f2=n2h2, gj ¼ fj þ fjþ1=n2h2 þ fjþ2=n4h4, j ¼ 3i; i ¼ 1;2;3;4 and fi, i=0–14 are defined in Appendix.
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The substitution vs ¼ os=n turns the phase velocity Eq. (33) into frequency equation, which is given by

f0o10
s þ g1n2o8

s þ g3n4o6
s þ g6n6o4

s þ g9n8o2
s þ n10g12 ¼ 0 (34)

Eq. (34) is the dispersion equation for the flexural wave motion of a plate in terms of ratio os ¼ o=d.
Adopting the procedure discussed in Section 5, we obtain the group velocity of the flexural motion in terms of phase

velocity vs as given below.

cg ¼ �
1

vs

f1v8
s þ g�1v6

s þ ðg6 þ g�2Þv
4
s þ ð2g9 þ g�3Þv

2
s þ ð3g12 þ g�4Þ

5f0v8
s þ 4g1v6

s þ 3g3v4
s þ 2g6v2

s þ 2g9

� �
(35)

where g�i ¼ 2fj þ fjþ1=n2h2, j ¼ 3i, i ¼ 1;2;3;4.
The group velocity cg can be expressed in terms of the frequency os from relation (35) by using vsðnÞ ¼ osðnÞ=n.
The asymptotic differential equation for the flexural motion (on applying the procedure outlined in Section 5) of a

thermoelastic plate is given by

ðf5q
6
t þ f8r

2q4
t þ f11r

4q2
t þ f14r

6
Þ � h2ðf2q

8
t þ f4r

2q6
t þ f7q

4@4
t þ f10r

6q2
t þ f13r

8
Þ

þh4ðf0q
10
t þ f1r

2q8
t þ f3r

4q6
t þ f6r

6q4
t þ f9r

8q2
t þ f12r

10q2
t Þ

8<
:

9=
;W ¼ 0 (36)

6.1. Long and short wavelength waves

The limiting forms of secular Eq. (34) in case of long wave length ðnh-0Þ and short wave length ðnh-1Þ

approximations are given by

o6
s f0o4

s þ
f2

h2
o2

s þ
f4

h4

� �
¼ 0 (37)

f0v10
s þ f1v8

s þ f3v6
s þ f6v4

s þ f9v2
s þ f12 ¼ 0 (38)

Clearly Eq. (37) has one trivial root ðo2
s ¼ 0Þ of multiplicity three with corresponding phase velocity equal to zero and two

non-trivial roots. The solution of Eq. (38) gives the phase velocities vs of five wave modes (in general complex) as a function
of nh, d and e and hence the wave motion under consideration is dispersive in character and attenuating in space.

7. Equivalence with thermoelastic Rayleigh–Lamb wave equation

Consider the thermoelastic Rayleigh–Lamb frequency equations for a thermoelastic plate in the context of coupled
theory of thermoelasticity [19],

tan m1h

tanb1h

� �71

�
m1ða2 �m2

1Þ

m3ða2 �m2
3Þ

tan m3h

tanb1h

� �71

¼
4b1m1n2ðm2

3 �m2
1Þ

ðn2 � b2
1Þ

2
ða2 �m2

3Þ
(39)

where a2 ¼ n2ðc2 � 1Þ, b2
1 ¼ n2ðc2=d2

� 1Þ, m2
1 ¼ n2ða2c2 � 1Þ, m2

3 ¼ n2ðb2c2 � 1Þ, a2; b2 ¼ f1þ io�1ð1þ eÞ7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� io�1ð1� eÞ�2 þ 4o�2e

q
g=2.

Here, the positive and negative powers correspond to the antisymmetric and symmetric waves modes, respectively.
In these notations, after expanding all tangent terms into the power series (considering only positive exponent), Eq. (39)

takes the form

c0 þ
1

3
h2c2 þ

2

15
h4c4 þ

17

315
h6c6 þ

62

2835
h8c8 þ � � � ¼ 0 (40)

where

c0ðc; dÞ ¼ 1þ
4n2b2

1

ðn2 � b2
1Þ

2

c2ðc; dÞ ¼ a2 þ
4n2b4

1

ðn2 � b2
1Þ

2

c4ðc; dÞ ¼ a2ðm2
1 þm2

3Þ �m2
1m2

3 þ
4n2b6

1

ðn2 � b2
1Þ

2

c6ðc; dÞ ¼ a2ðm4
1 þm2

1m2
3 þm4

3Þ �m2
1m2

3ðm
2
1 þm2

3Þ þ
4n2b8

1

ðn2 � b2
1Þ

2
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c8ðc; dÞ ¼ a2ðm4
1 þm4

3Þðm
2
1 þm2

3Þ �m2
1m2

3ðm
4
1 þm2

1m2
3 þm4

3Þ þ
4n2b10

1

ðn2 � b2
1Þ

2

Upon retaining an appropriate number of terms, the model of any asymptotic order OðhNÞ may be obtained analytically
in terms of the polynomial dispersion relations. In reality, with reasonable choice of accuracy, the value of N is limited by
the associated labor consuming derivation of coefficients and the difficulties with numerical solution of high order
polynomial equations due to the extremely high rate of variation in coefficients. On close inspection, it can be established
that all coefficients of cnðc; dÞ are completely identical to those of PS2

in operator P of Eq. (24) associated with the flexural
motion in the operator plate model, i.e.,

cnðc; dÞ ffi PðnÞS2
ðc; dÞ; ðn ¼ 0;2;4;6; . . .Þ (41)

This type of motion is governed by the dispersion relation PS2
ðc; dÞ ¼ 0, reproduced here with the corresponding order of

approximation

v2
s ðP
ð0Þ
S2
ðc; dÞ þ 1

3 Z
2Pð2ÞS2
ðc;dÞ þ 2

15 Z
4Pð4ÞS2
ðc;dÞ þ 17

315 Z
6Pð6ÞS2
ðc; dÞ þ 62

2835Z
8Pð8ÞS2
ðc; dÞ þ � � �Þ ¼ 0 (42)

where Z ¼ nh

c0ðc; dÞ ¼ v2
s

c2ðc; dÞ ¼ d2v4
s þ ð3� 4d2

Þv2
s � 4ð1� d2

Þ

c4ðc; dÞ ¼ A2d
2v6

s þ 2ð2� d2
� 2d4A2Þv

4
s þ ð8d

2
� 11þ 4d4A2Þv

2
s þ 8ð1� d2

Þ

c6ðc; dÞ ¼ A4d
4v8

s þ ð4� 3d2A2 � 4d6A4Þv
6
s þ ð�16þ 3d2

þ 12d4A2 þ 4d6A4Þv
4
s þ ð23� 12d2

� 12d4A2Þv
2
s þ 12ðd2

� 1Þ

c8ðc; dÞ ¼ A6d
8v10

s þ 4½1� d6
ðA4 þ d2A6Þ�v

8
s þ 2½�10þ d4

ð3A2 þ 8d2A4 þ 2d4A6Þ�v
6
s þ 4½10� d2

ð1þ 6d2A2 þ 4d4A4Þ�v
4
s

� ½39� 8d2
ð2� 3d2A2Þ�v

2
s þ 16ð1� d2

Þ

where A2 ¼ a2ð1� b2Þ þ b2, A4 ¼ a2ð1� b2Þða2 þ b2Þ þ b4, and A6 ¼ a2ð1� b2Þða4 þ a2b2 þ b4Þ þ b6.
The only difference between Eqs. (33) and (42) is in factors out side the braces. Eq. (42) has an extra trivial solution and

the identity of expressions inside the braces guarantees the equivalence of non-trivial roots. The frequency spectrum for
the antisymmetric motion of a plate is shown in Fig. 10. This has resemblance with that in Fig. 7.

8. Special cases

(a) Elastic plate under thermal equilibrium: In the case of uncoupled thermoelasticity (elastic plate), the coefficient of
linear thermal expansion vanishes because the elastic and thermal fields are independent of each other so that b ¼ 0 and
hence e ¼ 0. The dispersion equation for flexural motion (34) remains similar in nature with the same degree polynomial in
vs, which gives five modes of wave propagation in a homogeneous isotropic elastic plate and is in agreement with Sharma
and Kumar [9]. Various coefficients can be obtained by taking e ¼ 0 in relevant relation. The Rayleigh–Lamb frequency
Eq. (39) in this case gets reduced to Eq. (1) of Ref. [8].

(b) Elastic plate under isentropic conditions: In this case of thermoelasticity, the coefficient of thermal conductivity
vanishes, so that K ¼ 0. The dispersion equation for flexural motion (33) remains as the same degree polynomial in vs,
which gives five modes of wave propagation in a homogenous isotropic plate. The phase and group velocity profiles have
been shown in Figs. 2 and 4 with non-dimensional wavenumber.

9. Numerical result and discussion

For the purpose of numerical illustrations we consider the case of the transversal and flexural modes of wave
propagation in an infinite homogenous isotropic thermoelastic plate of Aluminum-epoxy material, the physical data of
which are given by [19]

e ¼ 0:073; l ¼ 7:59� 1010 N m�2;m ¼ 1:89� 1010 N m�2;r ¼ 2:19� 103 Kg m�3

K ¼ 2:508 K m�1 s�1 3C�1;Ce ¼ 961:4 J Kg�1 3C�1;

If we write

c�1 ¼ V�1 þ io�1Q (43)

So that n ¼ Rþ iQ , where R ¼ o=V , V, Q, o are real numbers.
The secular Eqs. (28) and (33) are in general complex polynomial equations and hence provide us complex phase

velocities of transversal and flexural motions, respectively, at first instant. The real phase speeds ðViÞ and attenuation
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Fig. 1. Variations of phase velocity of flexural modes in isothermal elastic plate with Rh.
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Fig. 2. Variations of phase velocity of flexural modes in non-conducting (isentropic) elastic plate with Rh.
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coefficients ðQiÞ can be obtained from the complex values of the phase velocity ðciÞ by using representation (43). Graeffe’s
root squaring method [26, p. 58] has been used to solve the secular Eqs. (28) and (33). This method (i) requires no prior
information about the roots of an equation; (ii) is capable of giving all the roots and hence has advantage over the other
methods. The dispersion curves for phase velocity and attenuation coefficient for all modes of transversal and flexural
motions have been computed from the secular Eqs. (28) and (33) with the help of MATHCAD software and are plotted
graphically in Figs. 1–9 in case of elastic and thermoelastic plates. The phase velocity for Rayleigh–Lamb frequency Eq. (39)
has been obtained by using FORTRAN programming and is illustrated graphically in Figs. 10 and 11. All the modes are found
to be dispersive in character.

According to Sharma et al. [27] at low frequencies mechanical energy transfer is more effective than thermal conduction
and that conditions locally are therefore nearly isentropic (constant entropy); whereas at high frequencies, thermal energy
transfer is a more predominant process and the prevailing conditions are nearly isothermal. Thus at low frequency limits
the wave like modes are identified with the small amplitude waves in elastic material that does not conduct heat and may
be regarded as inherent in the classical elastodynamics derived strictly from mechanical principles. However, here we have
analyzed flexural wave motion under isentropic conditions as well as at isothermal one for completion purpose in Figs. 1, 2
and 3, 4, respectively. Figs. 1 and 2 show the variations of phase velocities ðVi; i ¼ 1;2;3;4;5Þ of various flexural modes
versus non-dimensional wavenumber (Rh) in an elastic plate under isothermal and isentropic conditions. It is noticed that
phase velocity of fundamental mode ðV1Þ starts from zero value at vanishing wavenumber (Rh-0), increases steadily in the
wavenumber range 0rRhr1 to ultimately become asymptotically close to Rayleigh wave velocity for RhZ2. The profiles of
all other modes observe cut-off frequencies at extremely small wavenumbers which decrease monotonically in the interval
0rRhr2 to become almost dispersionless and asymptotically close to that of shear wave modes for RhZ2. While the
isentropic and isothermal values of phase velocity of fundamental mode ðV1Þ are comparably equal in the interval 0rRhr1
but former is grater than latter for RhZ1. The isentropic phase velocities V2 and V3 have small magnitudes in the range
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Fig. 4. Variations of group velocity of flexural modes in non-conducting (isentropic) thermoelastic plate with Rh.
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Fig. 7. Variations of phase velocity of flexural modes in thermoelastic plate with Rh.
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Fig. 6. Variations of attenuation coefficient of transversal modes in thermoelastic plate with Rh.
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0rRhr1 as compared to their isothermal values; however, their trends get reversed for Rh41. Moreover, the trend of
variations of the magnitude of isentropic and isothermal phase velocity V4 is exactly opposite to that of V2 and V3 at all
wavenumbers. The magnitude of isothermal value of phase velocity V5 is greater than that of its isothermal value at all
wavenumbers.
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Fig. 10. Variations of phase velocity of flexural modes in thermoelastic plate with Rh. (Rayleigh–Lamb type equation).
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Fig. 11. Variations of attenuation coefficient of flexural modes in thermoelastic plate with Rh. (Rayleigh–Lamb type equation).
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Fig. 9. Variations of attenuation coefficient flexural modes in thermoelastic plate with Rh.
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Figs. 3 and 4 present the variations of group velocities ðVgi
; i ¼ 1;2;3;4;5Þ of flexural modes in an elastic plate, both at

isentropic and isothermal conditions, versus non-dimensional wavenumber, respectively. The isentropic and isothermal
values of group velocities of various modes are found to be zero at vanishing wavenumbers which correspond to the
condition of zero energy transmission in horizontal direction. The profiles of group velocity, both isentropic and isothermal,
increase monotonically in the interval 0rRhr1 and tend to phase velocity profiles of respective modes at high frequency
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limits for all modes. The appearance of the negative group velocity Vg2
and Vg3

in the intervals 1.75rRhr2.75 and
2.75rRhr3.75 is also noticed in case of isothermal elastic plate which agrees with Tolstoy and Usdin [28]. In these
intervals, the group velocity is in opposite direction to that of phase velocity and energy transportation took place in a
direction opposite to that of the wave vector.

It is observed from Fig. 5 that the phase velocity profiles of transversal wave modes V2 and V3 is coincident and decrease
monotonically in the wavenumber range 0rRhr2 and then vary steadily almost in linear manner to become asymptotic to
shear horizontal modes. The profiles of fundamental mode ðV1Þ observe linear variations and remain dispersionless with
magnitude equal to d at all values of wavenumber (Rh). It has also been observed that phase velocity profiles of all the three
modes become asymptotically close to that of shear horizontal wave velocity with magnitude d. The phase velocity of
fundamental mode ðV1Þ is dispersionless and hence its group and phase velocities coincide with each other. The group
velocity profiles Vg2

and Vg3
is also coincident and increase monotonically from zero value at vanishing wavenumber to

become asymptotically close to phase velocities of respective modes. The phase velocity of second and third modes of
transversal motion being complex lead to attenuating nature and the variations of whose attenuation coefficients Q2 and
Q3 are plotted in Fig. 6 versus wavenumber. The profiles of these attenuation coefficients are also coincident which
increases in the range 0rRhr2 before it starts decreasing steadily with increasing wavenumber afterwards to ultimately
get stabilized.

Fig. 7 shows the phase velocity profiles of flexural wave motion for isotropic thermoelastic plate versus wavenumber.
The trends of variations of phase velocity profiles ðVi; i ¼ 1;2;3;4;5Þ in thermoelastic plate are similar to that in the elastic
plate as can be observed from Figs. 1, 2 and 7, but with the exception of significant modifications in their magnitude due to
thermal effects at all values of wavenumber (Rh). It is noticed that, the magnitude of phase velocities of thermoelastic plate
have small values as compared to their respective values in elastic plate, both isothermal and isentropic, at all values of
wavenumber (Rh). Because the roots of secular Eq. (33) are complex for all considered values of wavenumber (Rh),
therefore the wave modes are attenuated in space. The phase speed profile of fundamental mode ðV1Þ increases from a zero
value as Rh-0 in the wavenumber range 0rRhr1, which varies steadily thereafter to become asymptotically close to
thermoelastic Rayleigh wave velocity at extremely large wavenumbers ðRh-1Þ. This is attributed to the fact that Ref. [21] a
finite thickness plate appears to be half-space in such situations and the vibration energy is mainly transmitted through the
surface of the plate. The free surfaces admit a Rayleigh-type surface wave with complex wavenumber and hence phase
velocity. Consequently, the surface wave propagates with attenuation due to the radiation of energy into the medium. This
radiated energy will be reflected back by the lower and upper surfaces. Thus the attenuated surface wave on the free
surface is enhanced by this reflected energy to form a propagation wave. In fact, the multiple reflections between the upper
and lower surfaces of the plate form caustics at one of the free surface and a strong stress concentration arises due to which
wave field becomes unbounded in the limit h-1. It has also been observed that as the thickness of the plate increases, the
phase velocity decreases. This can be explained by the fact that as the thickness of the plate increases, the coupling effect of
various interacting fields also increases resulting in lower phase velocity. It can also be observed that the Rayleigh wave
velocity is reached at lower wavenumber as the thickness increases, because the transportation of energy mainly takes
place in the neighborhood of the free surfaces of the plate in this case. The magnitude of velocity of this mode is noticed to
be one-half to that in the elastic plate. The behavior and trends of the variations of the profiles of higher modes ðVi; i ¼

2;3;4;5Þ are more or less similar to that of their counterparts in elastic plate with the exception that their magnitudes get
significantly reduced in the thermoelastic plate due to thermal variations. Fig. 8 shows group velocity profiles of all the
modes of wave propagation in thermoelastic plate versus wavenumber. It is observed that the group velocity of all the
modes get reduced at least 50 percent to that in elastic plate and no negative values of group velocity is noticed for any
mode in the thermoelastic plate. The variations of attenuation coefficients ðQi; i ¼ 1;2;3;4;5Þ versus wavenumber have
been plotted in Fig. 9. It is revealed that the profiles of attenuation coefficients ðQi; i ¼ 2;3;4;5Þ in contrast to that of Q1

increase from small values close to almost zero at vanishing wavenumber in the wavenumber range 0rRhr1 to become
steady and stable thereafter for RhZ1. The profile of attenuation coefficient Q1 has a finite non-zero value which is
significantly large as compared to that of ðQi; i ¼ 2;3;4;5Þ at vanishing wavenumbers. This decreases in the range 0rRhr3
and becomes steady and stable for RhZ3. Figs. 10 and 11 show the variations of phase velocity and attenuation coefficient
profiles of first five flexural modes versus wavenumber, which are obtained from Rayleigh–Lamb frequency equation for
thermoelastic plate [19], respectively. It is observed that all modes are approximated very well and practically coincide
with their counterparts in Figs. 7 and 9 obtained by employing operator plate model here except small variations in the
magnitude of these quantities, especially phase velocity. The comparison of various profiles of phase velocity and
attenuation in Figs. 7, 10 and Figs. 9, 11 reveal that operator method approximates thin and thick plate situations more
effectively and accurately than the other approaches.
10. Conclusions

The asymptotic operator plate model for free vibrations; both flexural and transversal, in a homogenous thermoelastic
plate leads to fifth degree and cubic polynomial secular equations, respectively, that governs frequency and phase velocity
of various possible modes of wave propagation at all wavelengths. The infinite power series expansions of classical
thermoelastic Rayleigh–Lamb frequency equation and secular equations obtained with operator plate model are found to
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be in close agreement up to approximations of order oðZ10Þ. It is also observed that in case of both techniques the non-
trivial roots are almost same. The negative values of group velocity of some modes are noticed in elastic plate at isothermal
conditions, which is in agreement with Tolstoy and Usdin [28]. Phase velocity of fundamental flexural wave modes in
thermoelastic and elastic, both isentropic and isothermal, plates’, respectively, approach to thermoelastic Rayleigh wave
and classical Rayleigh wave velocity, respectively, at large wavenumbers ðRh-1Þ. Phase and group velocity profiles of
transversal wave modes V2 and V3 approach to that of shear horizontal mode. However, the fundamental mode V1 remains
dispersionless at all wavelengths in this case. The group velocity of all the wave modes in thermoelastic and elastic, both
isentropic and isothermal, plates approach to phase velocity of respective mode at short wavelengths. The phase and group
velocities have same magnitudes in case of non-dispersive wave modes. The thermal variations result in the reduction
of phase and group velocities of the wave modes in addition to their attenuating character. Operator plate model
approximates thin and thick plate structures more accurately than the other methods.
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Appendix

The various coefficients in Eq. (33) are obtained as follows:

f0 ¼ d2
ða8b10 � 10xd2

Þ

f1 ¼ a6b3 þ a2b6 þ a4b8 þ d2
½a8b10 þ a9b9 þ 10d2x0ð3a1 � 2Þ�

f2 ¼ 20d2
½3a9ð1� xÞ þ d2

ðb10 þ 90x0Þ�

f3 ¼ 4io�1b6d� ða5b3 þ a6b2 þ a2b5 þ a4b7 þ a3b8Þ � d2
½a7b10 þ a8b9 þ ð8þ 16gÞa9 þ 10d2x0ð2þ 12gþ a1Þ�

f4 ¼ 20d2
½3a8ð1� xÞ þ 6ð1þ gÞa9 þ ð4� 5gÞa6 þ ð1� 2gÞb10 � d2

fb9 þ 3dea4 � 30ð1þ 6gÞd2x0g�

þ 60½xb3 þ ð1þ gÞdeb8�

f5 ¼ 120½a9 þ b10 þ 10d2
ð1� xþ 3x0Þ�

f6 ¼ d2
½a7b9 þ 2ð1þ 2gÞa8 þ a7b10 � 10d2x0fa1 � 2ð1þ 4gÞg� � 4io�1b5d� b3 � ða6b1 � a5b2 þ a2b4 þ a4b6 � a3b7Þ

f7 ¼ 20d2
½3ð1� xÞa7 þ 6ð1þ gÞa8 þ ð1� 2gÞb9 � ð4þ 5gÞa5 þ d2

ð8þ 16gþ b9 þ d2a6=5Þ�

� 60½b3 � b2xþ edfda3 � ð1þ gÞb7g þ 10ð3þ 4gÞx0d4
� � 40io�1d½3b5 � d2

ða2 � 2io�1dÞ�

f8 ¼ 120d2
½a8 þ b9 þ a6 � b3d

�2
þ 10d2

f3ð1þ gÞd2e2 þ 2ð2þ gþ x� x0 þo�2Þg�

f9 ¼ b2 þ a5b1 þ a3b6 � 4io�1b4d� d2
½a7b9 þ 8ð1þ 2gÞa7 þ 10ð1þ 4gÞd2x0�;

f10 ¼ 60½b2 þ b1xþ edð1þ gÞb6� � 20d2
½ð5g� 4Þ þ 6ð1þ gÞa7 þ ð1� 2gÞb9

þ 3ð1� xÞa7 � 3ed3a3 þ 2d2
f2a5 þ ð1þ 2gÞð4þ 15x0Þg� � 40io�1dð3b4 � 4io�1d3

Þ

f11 ¼ 120d2
½�8ð1þ 2gÞ � ða7 þ a5 þ b9 � b2d

�2
Þ þ 10ð1� 2gÞx� 10d2

f5þ 6g� x0 þ 4ðxþo�2Þ � 3d2e2ð1þ gÞg�

f12 ¼ �8d2
ð3d4
� 6d2

þ 4Þ

f13 ¼ 40d2
ð32d4

� 81d2
þ 30Þ

f14 ¼ 480d2
ð5� 12d2

Þ

ai ¼ ai þ aiþ1

bi ¼ bi þ biþ1; i ¼ 7;8;9

b1 ¼ �3þ ð3þ 4gÞgþ ð53� 100gþ 40d4
Þd2
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b2 ¼ ga7 þ ½�68gþ x0ð1þ 5d2
Þ þ 10ð3þ 5gÞd2

�d2

b3 ¼ ga8 þ ½23g� x0ð1þ 10d2
Þ � 2ð8þ 5gÞd2

�d2

b4 ¼ �io�1d½3� ð3þ 4gÞ þ 20ð1� 2d2
Þd2
�

b5 ¼ io�1d½a7 þ 30d2
ð1� 2d2

Þ � io�1d4
�

b6 ¼ �10ed3
½g� 2ð1þ gÞd2

�

b7 ¼ 5ed3
½2g� ð7þ 5g� xÞd2

�

b8 ¼ �5ed5
ð3þ g� xÞ

b9 ¼ 6� a1 þ 2ðx0 þ 2xÞ � 12io�1d2
ð2� d2

Þ

b10 ¼ 1� 6x� a6
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